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Weighted averages and order parameters for the infinite 
range Ising spin glass 

C De Dominicis and A P Young: 
Service de Physique Theorique, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 12 November 1982 

Abstract. The Sherrington-Kirkpatrick spin glass model is studied by replicas and by 
analysing the mean field equations of Thouless, Anderson and Palmer (TAP). We show 
that the standard order parameter defined by statistical mechanics is given by the auerage 
of all off-diagonal components of the matrix qog. There is consequently no violation of 
the fluctuation dissipation theorem. We describe how to weight the different solutions of 
the TAP equations and argue that there is no entropy from solution degeneracy. This 
assumption is shown to be internally consistent. The square of a spin expectation value 
for a solution, averaged over solutions, is shown to be q(1) if we make the Parisi- 
Sompolinsky ansatz for qa8. 

1. Introduction 

In the long search to establish a credible mean field theory for spin glasses the infinite 
range SK (Sherrington and Kirkpatrick 1975) Ising model has been particularly studied. 
The Hamiltonian of the SK model is given by 

where oi = *1 (i = 1,. . , , N )  and the Jij are independent random variables whose 
distribution has zero mean and width J/N,  the same for all pairs of sites. We shall 
set Boltzmann’s constant equal to one and in these units there is a transition in the 
thermodynamic limit at T, = J. A crucial feature is that the mean field equations of 
TAP (Thouless et a1 1977) have an enormous number of solutions (De Dominicis et 
a1 1980, Bray and Moore 1980a, Tanaka and Edwards 1980). These equations are: 

where m; is the average of ai for solution ‘s’, and the corresponding free energy of 
each solution is given by 

F { m s } = - C  Ji imfmf-$  1 J~,[1-(mf)2][1-(mf)2]  
i < j  i < j  
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2064 C De Dominicis and A P Young 

Averages should be computed as sums over solutions with an appropriate (normalised) 
weight P ( s )  which implies that there are many ways of defining an order parameter. 
For instance, we have 

(4) (aj)r= mi = C m : P ( s )  
S 

where ( . . . )T denotes the thermal average for a given set of interactions. The standard 
order parameter q, obtained from statistical mechanics, is then given by 

where the bar denotes an average over the random couplings. 

qEA, by averaging (m:)' over solutions, i.e. 
Alternatively we obtain the EA (Edwards and Anderson 1975) order parameter, 

Clearly qEA # q if many solutions contribute with significant weight. In order to have 
a non-zero value of q it is necessary for a symmetry breaking field to be applied. We 
shall take a uniform magnetic field, which can tend to zero if the thermodynamic limit 
is taken first (see e.g. Young and Kirkpatrick 1982). 

The TAP equations still involve the full set of interactions Jii, so most of the analytic 
work has instead centred on directly evaluating the statistical mechanics of the SK 
model by the replica method without going through the TAP equations. This involves 
making an ansatz for the matrix qaP in replica space. The most successful such ansatz 
is due to Parisi (1979, 1980a, b, c, d, e) in which qUp is a function of a single variable 
x, 0 S x S 1. Furthermore, sums over distinct pairs of replicas become integrals over 
x, i.e. 

.1 

Since the field hi couples to &up the local susceptibility 
(nT)-'  I;, (ay"ap) for fixed ao, which for Parisi's ansatz becomes 

1 

Txjj = 1 -jo q ( x )  dx, 

(7) 

xii is given by 

whereas according to the fluctuation-dissipation theorem (FDT) one has 

TXjj = 1-4. (9) 
By using dynamics instead of replicas Sompolinsky (1981) has produced a theory 

which involves, besides the order parameter q ( x ) ,  an anomaly A(x). These two 
functions are related by a gauge condition leaving a degree of arbitrariness for choosing 
q ( x )  (or A(x)) but q(O), q ( 1 )  and xii are identical to Parisi's. In fact both ansatzes 
give identical results for the expectation value of all observables (De Dominicis et a1 
1982, Sommers 1983) although a rigorous proof (demonstrating the monotonic 
character of A ' ( x ) / q ' ( x ) )  is still missing. Like Parisi's, Sompolinsky's ansatz may also be 
given a direct replica derivation (De Dominicis et a1 1981). However, the dynamic 
derivation gives in addition a physical interpretation of x in terms of a spectrum of time 
scales, all of which diverge in the thermodynamic limit (see also Mackenzie and Young 
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1982) such that x = 1 is the shortest of these time scales and x = 0 is the longest. One 
naturally interprets these very long time scales in terms of fluctuations from one TAP 
equation to another (see e.g. Young 1981). With this assumption it follows generally that 
4EA, defined by (6), is equivalent to the usual definition 

which for the Sompolinsky ansatz gives 

4EA = 4 (1) .  (10) 
On the other hand, statistical mechanics results are in general obtained on time scales 
longer than the largest relaxation time, i.e. 

4 = lim lim (aj(0)uj(r))T 
N - m  r-m 

so, according to Sompolinsky, 

4 = d o ) .  (11) 
From (B), (9) and (1  1) it is clear that Sompolinsky’s results violate the FDT. Recently 
Sommers (1982) has given a different argument for (11) based on replicas. 

The violation of the FDT implied by (11) seems unsatisfactory to us, so we have 
studied in more detail the various order parameters in the SK model both in replica 
and TAP frameworks. Our main results are as follows. 

(i) We give a simple replica argument (0 2) that 

or in Parisi’s ansatz 

so, comparing (8) and (9), we see that there is no violation of FDT in Parisi’s theory 
if correctly interpreted. Other statistical mechanics averages are also obtained as 
averages over all replicas rather than one particular set. 

(ii) We argue that the weight P ( s )  for a TAP solution is given by 

P ( s )  = exp(-PF{m’})/Z 

z = 1 exp(-PF{m ’}) 

where 

5 

and F { m ‘ }  is the free energy of the solution (3). We conjecture that with this weight 
there is no extensive contribution to the entropy due to solution degeneracy. A simple 
argument ( 0  3) then leads to the FDT without using replicas. 

(iii) We compute averages with the weight P ( s )  by reducing the system to a one-site 
problem and using replicas. We show that the assumption of no solution degeneracy 
is consistent because it leads to the original SK Hamiltonian in terms of only the matrix 
4 4  for a + P (§ 4). 

(iv) As an additional bonus we obtain a self-consistent equation for 4EA in (6), 
which is just 4an in replica language and has no analogue in the SK Hamiltonian. If 
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we make the Parisi or Sompolinsky ansatz for qap (a # p )  we find that our equation 
for 4aa is satisfied if qEn = 4 (1) which agrees with Sompolinsky in this case (see equation 
(10)). We also verify using the Parisi-Sompolinsky ansatz for qaIa (a # p )  that the free 
energy is equal to the weighted average of solution free energies (which is equivalent 
to there being no entropy due to solution degeneracy). 

The only missing item to complete the argument for absence of entropy due to 
solution degeneracy is a stability analysis of our replica ansatz. We hope that this 
problem can be reduced to the one already explored (De Dominicis and Kondor 1983, 
Goltsev 1982) of the SK functional of qap. Our conclusions are discussed in § 5 and 
some technical details are given in the appendix. 

2. Connection between statistical mechanics averages and replicas 

In this section we shall evaluate the statistical mechanics order parameter 4 = (uj)= 
(equation ( 5 ) )  by a simple replica argument and show that it is given by (12). The 
definition of 4 is equivalent to 

1 

Trl U :  e-PH1 Tr2 gf e-pH2 
4‘ z ’  

where we label the spins in the first trace by ‘1’ and the second trace by ‘2’. It is 
difficult to carry out the average over the disorder in (16) because the random 
interactions appear in the numerator and denominator. The replica trick gets around 
this by multiplying numerator and denominator by Z”-’ and letting n -P 0. Hence 

since the denominator is just 1. Altogether there are n replicas and that labelled by 
‘1’ in (16) can be any one of these and that labelled by ‘2’ can be any other. Thus the 
replicas a. and PO in (17) can be any distinct pair. By definition of qap one then has 

There is now an apparent paradox in situations where replica symmetry is broken, 
since one appears to get different results depending on the choice of replicas. This 
is not so, however, because of the following argument, which though simple does not 
seem to have appeared before in the spin glass literature. 

Since the effective Hamiltonian in the replica formalism, given by 

is replica symmetric it follows that for every solution qap there are other equivalent 
solutions obtained by permuting the replicas. If these solutions are distinct from the 
original one they must be included as well. In more mathematical terms one must 
sum over all equivalent saddle points. One should therefore evaluate qaopo for fixed 
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a. and Po but sum over all distinct solutions which restores replica symmetry?. For 
Parisi’s ansatz (and we would argue for any physically acceptable solution) the number 
of inequivalent solutions formally tends to unity as n + 0. Hence the correct procedure 
is to average over all distinct solutions, which is clearly equivalent to taking one 
solution and averaging over all distinct pairs of replicas, i.e. 

1 
4 = l i m p  c 4 4  ,,+o n ( n  - 1) 

where the qUp are for one solution. With Parisi’s ansatz this becomes equation (13). 
Other statistical mechanics averages can be evaluated in the same way. For 

instance: 

becomes 

1 
lim ~ 

n - 0  n(n - 1) 0 
( 4 p p ) 2  E 1 ~ q2(x) dx. 

This is consistent with the linear response theory result that 4‘2’ = 1 - 2T(U(T)I / J2  
(Bray and Moore 1980b) where U ( T )  is the energy per spin, since Parisi shows that 

It appears to us that Sommers’ (1982) argument for q = q ( O )  neglects the existence 
of many solutions. However G Parisi (private communication) has suggested that 4(O) 
may be obtained if the Hamiltonian H1 and Hz in (16) have different magnetic fields 
h 1, and hZ since this breaks the replica symmetry in the analogue of (17). The difference 
h l - h 2  may, as usual, tend to zero after the thermodynamic limit has been taken. 
This leaves strict statistical mechanics averages with the above answer (12), but could 
lead to Sompolinsky’s answer for ‘time-dependent’ magnetic fields. 

50’ q2(x) dx = 1 -2TlV(T)1/J2. 

3. The TAP equations: a conjecture 

There is a general consensus that the SK model has many minima in phase space, 
corresponding to TAP solutions, with barriers between them whose height diverges in 
the thermodynamic limit (Sompolinsky 1981, Mackenzie and Young 1982, Young 
1981, Hertz 1983a, b, Toulouse 1982). Indeed, it appears impossible to understand 
the model without this picture. At a given temperature and field there are consequently 
pockets of phase space which are inaccessible from each other. One can therefore, 
in principle at least, carry out restricted statistical sums separately in each portion of 
phase space. The quantitiy 2’ exp[-PH{a}], where Z’ denotes a sum over all states 
accessible from each other in the minimum corresponding to TAP solution ‘s’, is just 
the exponential of (minus p times) the corresponding free energy. In other words 

exp(-pF{m’}) = 1’ exp(-pti{cr}). (20) 

+The order parameter qooQo (for instance, Parisi’s ansatz) breaks the symmetry with respect to 
permutations of replica indices and the ‘time reversal’ symmetry (explicitly broken by the magnetic field). 
Only the permutational symmetry is restored (with a distinct Parisi ansatz for each distinct saddle point). 
In strictly zero field, saddle points generated by ‘time reversal’ also contribute, the symmetry is fully 
restored and the order parameter vanishes. 
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The partition function Z involves an unrestricted sum over states so 

Z = C exp(-PF{ms}) 
S 

and the normalised statistical weight for each solution is given by 

Similarly mi = is given by 

since mf  is defined by 

We could alternatively obtain mi by differentiating T In Z with respect to hp From 
(3) and (15) this also appears to lead to (4). However, there is a possible complication 
since we know that the total number of solutions is of the form exp[Na(h, T)], where 
a is a function of field and temperature, so we might expect another contribution to 
(4) coming from differentiating the solution degeneracy with respect to hp Since (4) 
must be correct as it stands (it is just another way of writing the definition of mi), we 
require that the number of solutions with significant statistical weight does not give 
an extensive entropy. 

To see how this can arise, let us replace the sum over solutions in (15) by an 
integral over free energy, i.e. 

where g($) is the degeneracy of solutions of a @veri free enerjy fi. From Bray and 
Moore (1980a) we know that g(fi)ocexp[Na(f)] where f = F / N  and a(?) is zero 
f o r t  less than fmin,the minimum free energy. Hence (22) becomes 

which, for N + 43, is dominated by f = f*, the value off which maximises the exponent. 
Then f* is given either by f* =fmin or the solution of a ' ( f* )  = Pf* depending on the 
form of a (f). The free energy is given by 

(24) f = f* - Ta (f*). 

f = f * ( = f m i n ) -  (25) 

We shall assume that f* = fmin and that a (f*) = 0 so that (24) becomes 

Indeed, we argued above that a (f*) = 0 is necessary, otherwise differentiation of the 
free energy with respect to hi will not give the correct value of mi (equation (4)). It 
also seems clear that we can consistently neglect any change in the number of solutions 
when performing higher derivatives over h or T, although we have not succeeded in 
giving a rigorous proof of this. In particular, one more derivative of (4) with respect 
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The local susceptibility of a single solution is given by (Bray and Moore 1979) 

T am;/ahj = 1 - (m:)’ (27) 

which is just the FDT applied to the states in one of the valleys in phase space. The 
‘anomalous’ terms‘ in brackets in (26), which represent the extra response due to 
changing the solution probabilities, are actually just what is needed to make the FDT 
work for averages over all of phase space, i.e. 

Txjj = 1-4 (9) 
where q is given by ( 5 ) .  Our result for q disagrees with a recent TAP calculation by 
Dasgupta and Sompolinsky (1983), who find q = q(O), as in Sompolinsky’s (1981) 
dynamical theory. Like us, they assume that only states with f = fmin are important 
and that (Y ( fmin) = 0. However, their approach seems to need several additional 
assumptions about the overlap of solutions which are not necessary in our method. 

4. Equivalence to the original SK Hamiltonian 

The partition function (15) can be written 

where A{m} = (det aZ@F/ami amjI normalises thedelta functions to unity. It isconvenient 
to use an integral representation of the S function, i.e. 

j amj 

1 m 

Z = I-,  dmj I dAj exp A{m} exp(-@F). 
, -m 

Differentiating with respect to hj gives 

mi = (mi + ihj) (30) 
where the average is over the integrand in (29) divided by Z i .  Clearly for consistency 
we need ( h j ) = O ,  which is just the mathematical expression for the absence of an 
extensive entropy due to solution degeneracy as discussed in 0 3. Defining 

1 1 1 
N i  N i  N i  

0 = - (mimi), g = - 1 (iAjmj), 4 = -1 ((ihj)’) (31) 

then the condition that (Aj) = 0 for all hj implies (aAj)/ahj = 0 so 

and N-’T  Z j x j j  = Z j  a(mj)/ahj is given by 
g+q^=o (32) 

N-’T 1 xii = N-’  1 (Q + g  -(mi)’) 
i i 

+ W e  hope there is no confusion in using the same symbol mi, both for the expectation value and the 
variable of integration in (28). This allows us to keep a simple notation in the following developments. 
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which, together with (4), ( 5 )  and (9), gives 

g = l - Q .  (33) 
We wish to average our results over the bond distribution which in practice necessitates 
replicas. The quantities Q, g and q in (31) then become matrices qua, gup and dUs 
respectively where, for instance, 

qUs = N-' miumiB. (34) 
i 

We shall be carrying out a saddle point integration for which the quB take their 
expectation values (see (41)), so the absence of an average on the RHS of (34) compared 
with (31) is of no significance. The variables introduced in (31) when averaged over 
the .Iij now become diagonal components, e.g. 

d = quu. (34a) 

To see this, take the definition of the average (mimi) (given below (30)), multiply by 
Z"-' and (following 0 2) let n + 0. We shall only consider solutions which are replica 
symmetric along the diagonal (i.e. qua etc independent of a), so we do not have to 
average (34a) over equivalent saddle points as is necessary for off -diagonal components 
(see 9 2). From (6), (31) and (34a) one obtains 

qau = qEA- (35) 

guu = 1 -qua, duu = -(1 -quul). (36) 

For a # p we have gas = (mi)(ihj) and dUa = ( ihj)  which should both vanish since 
(ircZj) = 0. As discussed in 9 2, this really implies that Xu,, gua = duo = 0 in a 
replica symmetry broken situation, but we shall make the ansatz that all off -diagonal 
elements separately vanish, i.e. 

The conditions corresponding to (32) and (33) now read 

2 

gua = dua = 0 (a # P ) .  (37) 
The calculation proceeds by replicating (28) n times, introducing Grassmann 

variables qi to evaluate the determinant and averaging over the .Iij as described in De 
Dominicis et a1 (1980). We find 

1 -Pf = lim - max(A +In C) 
n - 0  n 

where 

and 

C =  I n ( dm,- ~ ) d e t [ ( l - m 2 ) - ' l - i A ] e '  

with 

L = i Tr[gmm +g(il;tm)+$(i&i$z)] 

+E U [ h ( m ,  +i&)- i ln( l  - m : ) - ( m u  +i&)  tanh-' mu]. (39c) 
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The trace is over replica labels, nap is related to the Grassmann variables by 

the tilded variables are used to enforce constraints and we have assumed the same 
magnetic field on each site. The determinant in (396) is of an n x n  matrix and 'U' 
refers to the unit matrix. Equation (38) is to be maximised with respect to 4as, gap, 
(ips, nas and the corresponding constraint variables. Strictly speaking we should also 
include the antisymmetric variables 

There is certainly a stationary point with p a p  = p &  = 0 which is the one we choose. 
A stability analysis would be necessary to verify that this is the correct choice. 

Making (38) stationary with respect to the constraint variables gives 

4 a p  = (mump), g u p  = (i&amp), cjaP = (iAaiAp), (41) 
where the expectation values here and in the rest of this section are with a weight 
given by the integrand in (396) divided by C. We now impose the req'uirement that 
there is no entropy, due to solution degeneracy, by substituting (36) and (37) into 
(39). We also assume 

n a p  = ( 1 - q a u P u p  ( = gup ). (42) 
This is obtained by requiring that the energy U is given by 

U = 1 U { m  ' } ) ~ ( s )  
S 

with no extra contribution from solution degeneracy. One can show that this extra 
term vanishes if nrrs = gas. Minimising, we find that (36), (37) and (42) are stationary 
points and, choosing this solution, we have in addition 

. -  .I 
14up = 14ap = i i a p 1 2  = (J2/2T2)qa0 

c a p  = 0. 
and 

Using (43) and defining new variables by 

(43) 

(44) 
. A  

ipu = iA, + ma 

one obtains 

and 

(46) 
a 

J 2  h 
L =- 1 4upiGai&0 + x i & ( ~ - t a n h - '  ma 

2T2 a.0 

so from (39) and (46) 
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where 

The integral over Xu in (47) just constrains the iC;, to be *1 so we finally obtain 

Xu = tanh-’ mu. 

which is just the replicated version of the SK model in terms of discrete Ising spins 
Su(= * 1). Notice that q,, has dropped out of our final result (49) because of the 
length constraint on the spins. The length constraint also means that averages over 
the m’s, i.e. (m,mP . . . ) = (tanh Xu tanh X, . , . ), can be replaced by the corresponding 
averages of iC;’s (or equivalently of S’s) provided no two replicas are the same. For 
example 

4,p = (m,mp) = ( W P )  (a  (50 )  

4u, = ( m ? )  = (tanh’ Xu) (51) 

as required. This does not work if two identical replicas occur so 

cannot be represented as averages over the S’s. In terms of solution averages 4uu is 
just qEA, see (35). 

The fact that we recover the original problem, whilst a hollow achievement from 
one point of view, nonetheless provides some justification for our ansatz, equations 
(36), (37) and (42) together with p z s  = p u s  = 0. Furthermore from (51) we obtain, as 
an additional bonus, an expression for (IEA, which has no analogue in the original 
formulation of the problem. Equation (5  1) is a rather complicated self-consistent 
expression for 4,u because it involves all the off -diagonal elements quo. In the appendix 
we show that if we make the Sompolinsky (or equivalently Parisi) ansatz for quP (a  # p )  
then (51) is self-consistently satisfied by 

(10) 

This result is also obtained from Sompolinsky’s dynamical interpretation of the Parisi 
variable x .  

As a final consistency check on our assumptions we show that the actual free 
energy f as given by (49) is equal to the average solution free energy f*. Evaluating 
the weighted average of f{m,} along the same lines as the above calculation gives 

4au (=4EA) = 4 (1). 

- (ma  tanh-’ ma + f l n ( l - m ~ ) ) .  (52) 
We have been unable to evaluate this expression in general but in the appendix 
we show that f* =f for the Sompolinsky-Parisi ansatz. From (24) this shows that 
a (f*) = 0, as has been assumed all along. 

Since we argue that only solutions with f =fmin contribute to the final results we 
could equivalently have replaced the exp(-pF) factor in (28) by a delta-function 
constraint on the free energy and eventually set f = f m i n .  This approach has been 
pursued by Bray and Moore (1981). Indeed, if we impose (42) together with = 0, 
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and minimise (39) with respect to qap, g a p  and daP,  but do not yet impose (36) and 
(37), we obtain equation (11) of Bray and Moore (1981) if they set U = -1, where U is 
an auxiliary variable which imposes the delta-function constraint on the free energy. 
Our final ansatz, (36)  and (37), corresponds in the Bray and Moore notation to 
q = qaa, 2 A =  8A = J2qaa/T2,  qap = 477$ = -2paP = J2qap/T2.  Bray and Moore obtain 
a different solution from this, which they show is equivalent to Parisi’s to lowest order 
in T,- T. In fact the values of U, A, A etc in the two approaches are different even 
above the de Almeida-Thouless (AT, 1978) line in the h-T plane, although both give 
(correctly) the SK free energy. The difference arises because we calculate directly the 
free energy so solutions are weighted by exp(-PF), which automatically imposes 
U = -1. Bray and Moore on the other hand calculate the logarithm of the number 
of solutions and U is allowed to determine itself. Above the AT line where there is 
only one solution a ‘white average’ (i.e. equal weight to all solutions), which corre- 
sponds to U = 0, will give correct results and this is the solution Bray and Moore find. 
Below the AT line the Bray-Moore solution has U < O  but with U tending to zero as 
the line is approached from below, whereas we have U = -1 always. Since the two 
solutions, though mathematically different, describe the same physics above the AT 
line, they may also be equivalent below the line but this has only been established to 
lowest order in T,- T (where both give Parisi’s solution), 

5. Discussion 

We have presented a consistent picture of the SK model in both TAP and replica 
frameworks. Our main assumption is that there is no solution degeneracy and we 
show that this is self-consistently satisfied. In our view there is no violation of the 
FDT if averages are consistently worked out by statistical mechanics. This agrees with 
earlier work by Young and Kirkpatrick (1982) and Hertz (1983a, b) but disagrees 
with Sompolinsky (1981), Dasgupta and Sompolinsky (1983) and Sommers (1982). 
We do, however, agree with Sompolinsky’s result that qEA = q(1). 
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Appendix 

We compute here the average value of q5(Xao) over the (normalised) weight given by 
the integrand in (48), i.e. 
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To compute this average we use the Sompolinsky ansatz as in De Dominicis et a1 
(1981). We work out in detail the two-step case which generalises immediately. 

The matrix qmS is divided into n/po big blocks (indexed by j o  = 1 ,2 ,  . . . , n/po) with 
po replicas in each big block. Each big block is divided into po/pl small blocks (indexed 
by jl = 1 , 2 , .  . . , po/pl), each small block containing p1 replicas indexed by a1 (a1 = 
1 , 2 , .  . . ,p l ) .  Thus a =(joj1al). Using qo, q1 as values for the off-diagonal and 
diagonal small blocks belonging to each diagonal big block, and ro, rl  for the off- 
diagonal and diagonal small blocks belonging to each off -diagonal big block, one has 

c qapibaibp 
2 2 c ib) + (qo - ro )  c (,E ifi) 

4 i o i l a l  lo l l Q l  

2 2 

+ ( r l - r o ) ~  ( c G) + [ ( q 1 - q o ) - ( r l - r 0 ) 1  c (xi;) (A21 
i l  i o m l  mil  a1 

where i& stands for i$jojlal. Introducing ZO, zjl and y,oyjojl to linearise and using 

qo - ro = -Ab/po, q l - r l =  -Ai/pl, (A3) 
0 .o 0 one may perform the X, integration (i.e. trace over spins) except for a = ao(=jol 

namely 
1), 

and the magnetisations mot m l  are as in Sompolinsky stationarity conditions, with 
obvious generalisation to the general R-step case. 
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As a result: 
(i) if q5 = tanh’ Xu, we have 

dz, 1 

quouo= 1 n = exp( - t  2’) tanh’ U{zr) 
r = O  J2r  r = O  

in a form that generalises with 1 + R. This, in the continuum limit, is by definition 
q(1) a result consistent with the implicitly made assumption in writing (A2); 

(ii) if q5 = -Xu, tanh Xu, + In 2 cosh Xu, = s we have 

r = O  I r = O  J 2 r  dzr r = O  

1 

s = 1 (qrA:+qrA: )+  n =exp( -4 1 2:) In 2 cosh V { z r } .  (A10) 

This allows us to compute -pf* as given by (53) and to verify that it is identical with 
the Sompolinsky free energy, thus proving that the solution entropy vanishes, i.e. 

a ( f * )  = 0. 
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